Connecting the dots across time: reconstruction of single-cell signalling trajectories using time-stamped data

نویسندگان

  • Sayak Mukherjee
  • David Stewart
  • William Stewart
  • Lewis L Lanier
  • Jayajit Das
چکیده

Single-cell responses are shaped by the geometry of signalling kinetic trajectories carved in a multidimensional space spanned by signalling protein abundances. It is, however, challenging to assay a large number (more than 3) of signalling species in live-cell imaging, which makes it difficult to probe single-cell signalling kinetic trajectories in large dimensions. Flow and mass cytometry techniques can measure a large number (4 to more than 40) of signalling species but are unable to track single cells. Thus, cytometry experiments provide detailed time-stamped snapshots of single-cell signalling kinetics. Is it possible to use the time-stamped cytometry data to reconstruct single-cell signalling trajectories? Borrowing concepts of conserved and slow variables from non-equilibrium statistical physics we develop an approach to reconstruct signalling trajectories using snapshot data by creating new variables that remain invariant or vary slowly during the signalling kinetics. We apply this approach to reconstruct trajectories using snapshot data obtained from in silico simulations, live-cell imaging measurements, and, synthetic flow cytometry datasets. The application of invariants and slow variables to reconstruct trajectories provides a radically different way to track objects using snapshot data. The approach is likely to have implications for solving matching problems in a wide range of disciplines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connecting the dots across time: Reconstruction of single cell signaling trajectories using time-stamped data

Battelle Center for Mathematical Medicine, Research Institute at the Nationwide Children's Hospital, 700 Children’s Drive, OH 43205 Departments of Pediatrics, Physics, Statistics, and the Biophysics Program, the Ohio State University, Columbus, OH Department of Mathematics, University of Iowa, Iowa City, IA Department of Microbiology and Immunology, University of California, San Francisco, San ...

متن کامل

SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles

Motivation Single cell transcriptional profiling opens up a new avenue in studying the functional role of cell-to-cell variability in physiological processes. The analysis of single cell expression profiles creates new challenges due to the distributive nature of the data and the stochastic dynamics of gene transcription process. The reconstruction of gene regulatory networks (GRNs) using singl...

متن کامل

A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks

Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...

متن کامل

A Novel Approach to Trace Time-Domain Trajectories of Power Systems in Multiple Time Scales Based Flatness

This paper works on the concept of flatness and its practical application for the design of an optimal transient controller in a synchronous machine. The feedback linearization scheme of interest requires the generation of a flat output from which the feedback control law can easily be designed. Thus the computation of the flat output for reduced order model of the synchronous machine with simp...

متن کامل

Time-Dependent Real-Space Renormalization Group Method

In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017